
Transforming Neural Network Visual Representations
to Predict Human Judgments of Similarity

Maria Attarian
Google Research, Brain Team

Mountain View, CA
jmattarian@google.com

Brett D. Roads
University College London

London, UK
b.roads@ucl.ac.uk

Michael C. Mozer
Google Research, Brain Team

Mountain View, CA
mcmozer@google.com

Abstract

Deep-learning vision models have shown intriguing similarities and differences
with respect to human vision. We investigate how to bring machine visual represen-
tations into better alignment with human representations. Human representations
are often inferred from behavioral evidence such as the selection of an image most
similar to a query image. We find that with appropriate linear transformations
of deep embeddings, we can improve prediction of human binary choice on a
data set of bird images from 72% at baseline to 89%. We hypothesized that deep
embeddings have redundant, high (4096) dimensional representations; however,
reducing the rank of these representations results in a loss of explanatory power.
We hypothesized that the dilation transformation of representations explored in past
research is too restrictive, and indeed we found that model explanatory power can
be significantly improved with a more expressive linear transform. Most surprising
and exciting, we found that, consistent with classic psychological literature, human
similarity judgments are asymmetric: the similarity of X to Y is not necessarily
equal to the similarity of Y to X, and allowing models to express this asymmetry
improves explanatory power.

Although deep-learning vision models can sometimes predict aspects of human vision [e.g., 4, 5, 15],
their behavior often contrasts sharply with human expectations. For instance, small perturbations that
are imperceptible to humans can dramatically affect model classification decisions [7]; and texture
and local image features drive classifiers [1, 6], whereas humans are more strongly influenced by
Gestalt shape. Given that differences exist in how humans and machines represent the world, our
goal is to develop techniques that bring their representations into better correspondence. This goal is
important for two reasons. First, human vision is robust and visual representations contain a wealth of
information about objects and their properties. Bringing representations into alignment might expand
the range of tasks for which deep nets are useful [e.g., 10, 16, 23]. Second, if the correspondence
is strong, deep nets can serve as a human surrogate for prediction and optimization, allowing us to
efficiently determine, say, the best training procedures for people [2, 18, 14, 19].

Let’s be more specific about the representations that need to be aligned. In a deep net trained to
classify images, the representation in the penultimate layer (prior to the softmax layer) serves as
a deep embedding of the image. This representation necessarily contains the features essential for
discriminating object categories. One might hope to align this representation with the activity pattern
in higher cortical areas of the human brain, i.e., a neural embedding, but it is not feasible to read
out large-scale brain activation at a sufficiently fine spatial and temporal resolution. Instead, one
might hope to align psychological embeddings—a representation of the features essential for human
classification, judgment, decision making, and information processing.

A common method to obtain psychological embeddings requires collecting similarity ratings between
pairs of items in a domain and then inferring an embedding in which more similar pairs are closer in
the embedding space than less similar pairs. Multidimensional scaling (MDS) [21] has been used
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for over half a century to obtain psychological embeddings for a fixed set of items whose pairwise
similarity matrix is provided. Even at a large scale, it can obtain low-dimensional interpretable
embeddings that generalize to behavioral tasks [8]. Although MDS can be used given partial or noisy
similarity matrices, it is not productive in the sense that it allows one to predict representations and
similarities only for items contained in the original similarity matrix. Ideally, one desires an open-set
method, not one that works only for the fixed, previously rated set.

1 Background and Related Research
Toward the goal of being able to obtain a psychological embedding for any image, methods have
been proposed that leverage human similarity judgments in conjunction with deep nets. These nets
have the advantage over MDS that they can in principle embed novel images.

Sanders and Nosofsky [19] trained a fully-connected net to re-map from a deep embedding of a
pretrained classifier to an MDS representation. They found that the resulting re-mapping generalized
well to images held out from the re-mapping training set. While this approach demonstrates that
psychological embeddings can be extracted from deep embeddings, the approach is limited in that it
produces a representation that is no richer than the MDS embedding. The dimensionality of MDS
embeddings is limited by the quantity of human judgment data available; deep embeddings are not.

Peterson, Abbott, and Griffiths [14] bypassed the MDS embedding and used a deep embedding to
directly predict human similarity judgments. These judgments, made on image pairs using a 0–10
scale with larger values indicating greater similarity, were placed into a symmetric similarity matrix
S, where element sij is the judgment for image pair i and j. The matrix is modeled with Ŝ, whose
elements are defined as:

ŝij = zT
i W zj , (1)

where zi and zj are the deep embeddings for images i and j and W is a diagonal matrix. The
parameters of W are obtained by optimization of a squared loss, ||S − Ŝ||2, with an L2 regularizer
to prevent overfitting. Peterson et al. found that the best fits to human data are obtained by a VGG
architecture [20], whose embedding layer is 4096 dimensional.

With non-negative elements, W can be decomposed as V TV , and Peterson et al.’s method can be
viewed as a form of deep metric learning [9, 11]. That is, the similarity function can be interpreted
as computing a dot product of linearly transformed embeddings, i.e., ŝij = (V zi)

T(V zj). In this
case, the linear transform rescales individual features (vector elements) of the embedding. Such
a transform makes the most sense if these features can be ascribed psychological meaning: when
comparing vectors, the rescaling permits some features to matter more, some less. However, the basis
used for representing the embedding is completely arbitrary: any rotation of the basis is a functionally
equivalent solution to the classifier (because a linear transform of the embedding is performed in the
softmax output layer). Consequently, we question whether it is well motivated to restrict transforms to
dilating a representation that lies in an arbitrary basis. Peterson et al. likely made this sensible choice
because a full W would have 16M parameters and would be underconstrained by the relatively small
number of human judgments. We describe a potential solution to this dilemma that both gives the
embedding a non-arbitrary basis—hopefully one with psychological validity—and allows us to vary
the number of free parameters in the model.

We have two further concerns with Peterson et al.’s method which our solution addresses. First, Peter-
son et al. z-score normalize the embeddings from the pretrained model before using the embeddings
to compute similarity. Variance normalization does not matter because any such normalization can
be inverted via W . However, the zero centering of z-scoring alters the angles between embedding
vectors, and those angles are not arbitrary: the original classifier uses these angles to compute softmax
probabilities. Second, Peterson et al. use absolute similarity ratings for model training. Such ratings
are subject to sequential dependencies [13], reducing the signal they convey. Relative judgments—of
the form ‘is X more similar to Y than to Z?’—tend to be more reliable, despite outwardly conveying
less information [3, 12, 24].

2 Methodology
2.1 Data set

We used a previously collected data set of similarity judgments for bird images [18]. The image set
contains four bird families (Orioles, Warblers, Sparrows, and Cardinals), four distinct species within
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each family, and thirteen distinct images of each species. (Examples are presented in Figure 2 of
[18].) Mechanical Turk participants were shown a query image along with two reference images and
chose which reference was most similar to the query. See the left edge of Figure 1 for a sample triple.
The resulting judgment providess a triplet inequality constraint (TIC). Some participants were shown
the query with eight reference images and were asked to choose the two most similar. Data from
these trials provide 12 TICs: each of the two chosen references is more similar to the query than each
of the six non-chosen references. The complete data set consisted of 112,784 TICs.

2.2 Models to be evaluated

Figure 1 sketches the structure of our approach. To obtain deep embeddings, we use a headless
VGG16 classifier pretrained on ImageNet from the Keras library. The penultimate layer of VGG16
has 4,096 units. To model the TIC, we pass the query and two references through VGG16 and
then compute pairwise similarities between the query and each of the references. For a query q and
reference r, we generalize the learned similarity function of Equation 1 as follows:

ŝqr = f(zq)
T W f(zr), (2)

where f : R4096 → Rk performs dimensionality reduction on the original 4096-dimensional deep
embedding. Variants of this model are specified via choice of f(.), k, and the constraints placed on
W . We explore these specific constraints on W :

• Identity: Use original deep embedding space via W = I . This case serves as a baseline.
• Regularized Diagonal: Rescale the original embedding with a diagonal matrix and impose an L2

penalty on the elements. This constraint on W was used by Peterson et al. (Equation 1). We
require the diagonal elements to be non-negative by optimizing for an unconstrained diagonal
vector v ∈ Rk and using W = diag(|v|).

• Diagonal: Same as the previous method except without regularization.
• Symmetric: Require symmetry of the k × k matrix, which allows us to interpret the similarity

function as applying an arbitrary linear transform to each embedding and then computing their
dot-product similarity (see Introduction). We optimize over an unconstrained matrix, V ∈ Rk×k,
where W = V TV .

• Unconstrained: We optimize directly over an unconstrained W ∈ Rk×k.

In picking k and f(.), we have two goals. First, we wish to reduce the number of free parameters
in our models to avoid overfitting the training data. Second, we wish to impose a basis that is less
arbitrary than that of the original deep embedding. As we argued earlier, the basis obtained from
training VGG is arbitrary; any rank-preserving linear transform is an equivalent solution given that
this transform could be inverted in the softmax layer to achieve the same output. If W is constrained
to be diagonal, it seems desirable for the dimensions rescaled by W to have some psychological
reality. To achieve these two goals in the simplest manner possible, we treat f as the projection of the
deep embedding onto the top k principal components of the embedding space. PCA is performed on
the embeddings of 23,400 images of the 18 bird classes in the ImageNet training set. Note that these
images are distinct from those used for similarity assessment.
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Figure 1: We model
human triplet judg-
ments of the form ‘Is
the query more simi-
lar to reference 1 or
2?’ After embedding
each image, pairwise
similarities are com-
puted and the rela-
tive similarity deter-
mines the probability
of choosing one refer-
ence or the other.
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To obtain a prediction for the human judgment, we follow a long tradition in choice modeling and
assume a logistic function of the relative similarities for query q and references r1 and r2:

Pr(choose refc| q, r1, r2) = logistic(ŝq,rc − ŝq,r3−c
). (3)

Note that because of the linearity of f and ŝ,

Pr(choose refc|q, r1, r2) = logistic
[
f(zq)

TW f(zrc − zr3−c)
]
.

2.3 Simulation details

Models are trained to maximize log likelihood of the training triples,

` =
∑

(q,r1,r2,c)∈T log Pr(choose refc| q, r1, r2)

where c is the index of the reference chosen by the human rater and T is the training set. Five-fold
cross-validation was performed, yielding 90k and 22.5k triplets in each fold for the training and
validation sets, respectively. We trained models using TensorFlow with an SGD optimizer, with
Nesterov momentum of 0.9, an initial learning rate of 10−9 for the Unconstrained model and 10−5

for all others, with an exponential scale-down of the learning rate by a factor of 0.9 every 40 epochs.
Although trained with likelihood maximization, we evaluate models on accuracy, defined as the
proportion of examples in which the human response matches the most likely model response. As
weak prevention against overfitting, we stopped training when the training accuracy did not improve
in the last 10 epochs over the 10 epochs previous. A second possible factor mitigating overfitting
is that optimization of the Unconstrained and Symmetric models with large k often blew up with
not-a-number-errors late in training, which led us to terminate and use the previous valid weights.

3 Results

Figure 2 shows the outcome of five-fold cross-validation on our data set of human similarity judgments
of bird images. The left and right panels show training and validation set accuracy, respectively. A
model prediction is scored as correct if the model’s probability of selecting the reference chosen by
the human is greater than 0.5. Accuracy is plotted as a function of the number of principal-component
loadings included in the deep embedding (k), and a separate curve is drawn for each different
constraint on W that we tested. We were unable to complete k = 4096 runs by submission time, but
the curves appear to be flattening so we do not expect surprises for k = 4096.

Validation performance roughly tracks training performance. However, for the most complex models
(Symmetric and Unconstrained W and large k) there appears to be some overfitting: the training curve
rises faster than the validation curve. We expected to observe more severe overfitting, manifested by a
drop in validation performance with k, because the largest models have a nearly 40:1 (Unconstrained,
k = 2048) and 20:1 (Symmetric, k = 2048) ratio of free parameters to training examples (TICs). It
appears that overfitting is prevented by some combination of two factors: (1) the linear form of the
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Figure 2: (a) Training and (b) validation performance as a function of the number of principal
components included in the embedding (k). Each curve represents a different constraint on W . Error
bars reflect ±1 SEM on the five-fold cross-validation procedure.
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model offers a sufficiently strong constraint on data patterns that can be fit, (2) inconsistency in the
human judgments causes TICs to violate transitivity which cannot be fit by the models we consider.

The validation curves in Figure 2b allow us to draw some strong and intriguing conclusions:
• Dilation of the transformed deep-embedding features (blue curves) achieves a significantly better

fit to the human data than by simply using the deep embedding straight from the VGG16 classifier
(grey curve). This result replicates the key finding of Peterson et al. on a new data set and a different
response measure. Our work extends Peterson et al. by using the transform f(.) and showing that
increasing the dimensionality of the embedding strictly improves the fit to human data.

• Over the range of L2 regularizer coefficients we explored, we did not see a benefit for the regularized
model (light blue curve) over the corresponding model without regularization (dark blue curve).
This finding is consistent with our general observation that overfitting is not occuring with the class
of models we consider and our data set.

• Applying a general linear transform to the deep embedding (purple curve) obtains a better fit to
the human data than a dilation (blue curves). Peterson et al. did not investigate using the broader
class of transform because it seemed likely that overfitting would occur. However we see a strict
improvement in performance with the more complex model, regardless of k.

• Relaxing the symmetry constraint on similarity (i.e., the similarity of A to B does not have to
equal the similarity of B to A) improves the fit to human data (red versus purple curve). This
finding was most surprising to us, but in retrospect might have been anticipated by the prominent,
longstanding finding that human judgments of similarity cannot be accounted for by the use of an
internal psychological distance metric [22]. For example, individuals might judge North Korea to
be more similar to China (focusing on the leadership) than China is to North Korea (focusing on
the size of the country). To cast this claim in terms of the judgments we are modeling, consider
two different triplets: (query I1, references I2 and I3) and (query I2, references I1 and I3). The
deep embedding of I1 and I2 are interpreted differently depending on whether they are in the role
of query or reference.
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Figure 3: Prediction accuracy for k = 2048
with held-out triplets vs. held-out images

In the above results, accuracy is assessed on held-
out triplets (TICs). To evaluate accuracy for held-out
images, we ran validation folds in which we randomly
selected images to hold out such that the training set
was roughly the same size as in our earlier experiment.
To best match our earlier experiment, we perform
five fold validation (sampling with replacement each
fold) for both held-out triplets and held-out images
with k = 2048. As Figure 3 indicates, models do
generalize to new images. The ranking of models is
the same, but performance does suffer on new images.

4 Discussion
Our models of similarity judgment are able to predict
89% of human binary choices, suggesting that a deep embedding from a pretrained classifier can be
adapted to capture the structure of psychological embeddings of visual images. By applying a linear
transform to a deep embedding, we are able to boost the accuracy of prediction from a 72% baseline
using the original embedding. We significantly improve on an existing approach in the literature [14],
which achieves a prediction accuracy on our data set of only 78%.

Our simulations reveal several surprising and intriguing results. First, we observe that overfitting is
not a serious issue for highly overparameterized linear models—models with forty times as many
free parameters as training data points. We are presently investigating whether this finding is due
to model linearity (which restricts the transformations that can be applied to the deep embedding)
or to some fortuitous early-stopping procedure. Second, and most notably, we observe a benefit for
encoding similarity in form that cannot be expressed in terms of distance metric in the embedding
space. Rather, one item of a pair is treated as an anchor with respect to which the other item is
compared. To the best of our knowledge, researchers in machine learning who model human similar
have done so based on distance metrics that do not permit the sort of asymmetry supported by our
data [e.g., 10, 17, 24, 23]. Considering the role of anchoring and context in choice is a productive
avenue for future research.
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